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Key concepts
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Marginal likelihood

p(w|x, y,M) =
p(w|M)p(y|x, w,M)

p(y|x,M)

Marginal likelihood:

p(y|x,M) =

∫
p(w|M)p(y|x, w,M)dw.

Second level inference: model comparison and Bayes’ rule again

p(M|y, x) =
p(y|x,M)p(M)

p(y|x)
∝ p(y|x,M)p(M).

The marginal likelihood is used to select between models.
For linear in the parameter models with Gaussian priors and noise:

p(y|x,M) =

∫
p(w|M)p(y|x, w,M)dw = N(y; 0,σ2

w ΦΦ> + σ2
noise I)
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Understanding the marginal likelihood (1). Models

Consider 3 models M1, M2 and M3. Given our data:
• We want to compute the marginal likelihood for each model.
• We want to obtain the predictive distribution for each model.
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Understanding the marginal likelihood (2). Noise

Consider a very simple noise model for yn = f(xn) + εn
• εn ∼ Uniform(−0.2, 0.2) and all noise terms are independent.

p(yn|f(xn)) =

{
0 if |yn − f(xn)| > 0.2
1/0.4 = 2.5 otherwise

• The likelihood of a given function from the prior is

p(y|f) =
N∏

n=1

p(yn|f(xn)) =

{
0 if for any n, |yn − f(xn)| > 0.2
2.5N otherwise

We will approximate the marginal likelihood by Monte Carlo sampling:

p(y|Mi) =

∫
p(y|f)p(f|Mi) d f ≈ 1

S

S∑
s=1

p(y|fs) =
Sa

S
· 2.5N

• A total of S functions are sampled from the prior p(f|Mi).
• fs is the sth function sampled from the prior.
• Sa is the number of samples with non-zero likelihood: these are accepted.

The remaining S− Sa samples are rejected.
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Simple Monte Carlo

We can approximate integrals of the form

z =

∫
f(x)p(x)dx,

where p(x) is a probability distribution, using a sum

z ' 1
T

T∑
t=1

f(x(t)), where x(t) ∼ p(x).

As T →∞ the approximation (under very mild conditions) converges to z.
This algorithm is called Simple Monte Carlo.
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Understanding the marginal likelihood (3). Posterior

Posterior samples for each of the models obtained by rejection sampling.
• For each model we draw 1 million samples from the prior.
• We only keep the samples that have non-zero likelihood.
Sa p(y|Mi)

8 8× 10−4

88 9× 10−3

17 2× 10−3
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Predictive distribution

Predictive distribution for each of the models obtained.
• For each model we take all the posterior functions from rejection sampling.
• We compute the average and standard deviation of fs(x).
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Conclusions

Probability theory provides a framework for
• making inferences from data in a model
• making probabilistic predictions

It also provides a principled and automatic way of doing
• model comparison

In the following lectures, we’ll demonstrate how to use this framework to solve
challenging machine learning problems.
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